38 research outputs found

    Finding More Relevance: Propagating Similarity on Markov Random Field for Image Retrieval

    Full text link
    To effectively retrieve objects from large corpus with high accuracy is a challenge task. In this paper, we propose a method that propagates visual feature level similarities on a Markov random field (MRF) to obtain a high level correspondence in image space for image pairs. The proposed correspondence between image pair reflects not only the similarity of low-level visual features but also the relations built through other images in the database and it can be easily integrated into the existing bag-of-visual-words(BoW) based systems to reduce the missing rate. We evaluate our method on the standard Oxford-5K, Oxford-105K and Paris-6K dataset. The experiment results show that the proposed method significantly improves the retrieval accuracy on three datasets and exceeds the current state-of-the-art retrieval performance

    Coupling of Cell Surface Biotinylation and SILAC-Based Quantitative Proteomics Identified Myoferlin as a Potential Therapeutic Target for Nasopharyngeal Carcinoma Metastasis

    Get PDF
    Distant metastasis is a major cause of treatment failure in nasopharyngeal carcinoma (NPC) patients. Cell surface proteins represent attractive targets for cancer diagnosis or therapy. However, the cell surface proteins associated with NPC metastasis are poorly understood. To identify potential therapeutic targets for NPC metastasis, we isolated cell surface proteins from two isogenic NPC cell lines, 6-10B (low metastatic) and 5-8F (highly metastatic), through cell surface biotinylation. Stable isotope labeling by amino acids in cell culture (SILAC) based proteomics was applied to comprehensively characterize the cell surface proteins related with the metastatic phenotype. We identified 294 differentially expressed cell surface proteins, including the most upregulated protein myoferlin (MYOF), two receptor tyrosine kinases(RTKs) epidermal growth factor receptor (EGFR) and ephrin type-A receptor 2 (EPHA2) and several integrin family molecules. These differentially expressed proteins are enriched in multiple biological pathways such as the FAK-PI3K-mTOR pathway, focal adhesions, and integrin-mediated cell adhesion. The knockdown of MYOF effectively suppresses the proliferation, migration and invasion of NPC cells. Immunohistochemistry analysis also showed that MYOF is associated with NPC metastasis. We experimentally confirmed, for the first time, that MYOF can interact with EGFR and EPHA2. Moreover, MYOF knockdown could influence not only EGFR activity and its downstream epithelial–mesenchymal transition (EMT), but also EPHA2 ligand-independent activity. These findings suggest that MYOF might be an attractive potential therapeutic target that has double effects of simultaneously influencing EGFR and EPHA2 signaling pathway. In conclusion, this is the first study to profile the cell surface proteins associated with NPC metastasis and provide valuable resource for future researches

    Land use change and climate variation in the Three Gorges Reservoir Catchment from 2000 to 2015 based on the Google Earth Engine

    Get PDF
    Possible environmental change and ecosystem degradation have received increasing attention since the construction of Three Gorges Reservoir Catchment (TGRC) in China. The advanced Google Earth Engine (GEE) cloud-based platform and the large number of Geosciences and Remote Sensing datasets archived in GEE were used to analyze the land use and land cover change (LULCC) and climate variation in TGRC. GlobeLand30 data were used to evaluate the spatial land dynamics from 2000 to 2010 and Landsat 8 Operational Land Imager (OLI) images were applied for land use in 2015. The interannual variations in the Land Surface Temperature (LST) and seasonally integrated normalized difference vegetation index (SINDVI) were estimated using Moderate Resolution Imaging Spectroradiometer (MODIS) products. The climate factors including air temperature, precipitation and evapotranspiration were investigated based on the data from the Global Land Data Assimilation System (GLDAS). The results indicated that from 2000 to 2015, the cultivated land and grassland decreased by 2.05% and 6.02%, while the forest, wetland, artificial surface, shrub land and waterbody increased by 3.64%, 0.94%, 0.87%, 1.17% and 1.45%, respectively. The SINDVI increased by 3.209 in the period of 2000-2015, while the LST decreased by 0.253 °C from 2001 to 2015. The LST showed an increasing trend primarily in urbanized area, with a decreasing trend mainly in forest area. In particular, Chongqing City had the highest LST during the research period. A marked decrease in SINDVI occurred primarily in urbanized areas. Good vegetation areas were primarily located in the eastern part of the TGRC, such as Wuxi County, Wushan County, and Xingshan County. During the 2000–2015 period, the air temperature, precipitation and evapotranspiration rose by 0.0678 °C/a, 1.0844 mm/a, and 0.4105 mm/a, respectively. The climate change in the TGRC was influenced by LULCC, but the effect was limited. What is more, the climate change was affected by regional climate change in Southwest China. Marked changes in land use have occurred in the TGRC, and they have resulted in changes in the LST and SINDVI. There was a significantly negative relationship between LST and SINDVI in most parts of the TGRC, especially in expanding urban areas and growing forest areas. Our study highlighted the importance of environmental protection, particularly proper management of land use, for sustainable development in the catchment

    Freezing-Thawing Damage Mechanism of Coal Gangue Concrete Based on Low-Field Nuclear Magnetic Resonance, Scanning Electron Microscopy, and N2 Adsorption

    No full text
    To study waterborne frost heaving failure mechanism of coal gangue ceramsite concrete (CGCC) under freeze-thaw cycles, capillary water absorption test, nonmetallic ultrasonic testing test, low-field nuclear magnetic resonance (LNMR) test, N2 adsorption test, and other tests were used to determine the effect of freeze-thaw cycles on the porosity, relative dynamic elastic modulus (RDM), and capillary adsorption rate of different coal gangue ceramsite (MT) replacement rates (0, 20%, 40%, and 60%). Combining the changes of performance indexes and the changes of micropore structure under freeze-thaw cycles, the freeze-thaw failure mechanism of normal concrete (OC) and CGCC was analyzed. In view of the particularity of MT material, the method based on pore size is put forward to distinguish M pores from T pores, and the reasons for different properties are analyzed from the microperspective. The results show that the freeze-thaw cycle changes the microstructure of coal gangue concrete and has an obvious influence on its properties. And when the replacement rate is 40%, degradation mitigation performance is optimal. Due to the particularity of MT shape, T pores are dominant in coal gangue concrete matrix, which is different from the microstructure of ordinary concrete and can reduce the structural deterioration caused by freeze-thaw. The research results of this paper can provide a reference for the research and application of CGCC in freeze-thaw environment

    Characterization of the complete chloroplast genome sequence of Tinospora sagittata and its phylogenetic implications

    No full text
    Tinospora sagittata is a perennial vine of the family Menispermaceae and distributed in Hunan, Hubei, Guangxi, and Sichuan province of P. R. China. It has been used in Chinese traditional medicine for centuries. The chloroplast (cp) genome of T. sagittata, characterized using Illumina technology, is 163,662 bp in size. There are a total of 130 genes, coding for 85 proteins, 37 tRNAs, and 8 rRNAs. Phylogenetic relationship analysis based on 16 complete cp genome sequences exhibited that T. sagittata was phylogenetically closer to Menispermum dauricum and Stephania japonica

    The first complete chloroplast genome of Liparis nervosa and its phylogenetic position within Orchidaceae

    No full text
    Liparis nervosa is a plant of the family Orchidaceae and mainly distributed in subtropical and tropical regions of the world. In Chinese traditional medicine, it has been used for the treatment of hemostasis, carbuncle, and furuncle for centuries. The chloroplast (cp) genome of L. nervosa, sequenced based on next-generation platform (NEOSAT), is 157,274 bp in size. The cp genome encodes 130 genes, including eight rRNA genes, 85 protein-coding genes (PCGs), and 37 tRNA genes. Phylogenetic relationship analysis based on complete cp genome sequences exhibited that both of L. nervosa and L. loeselii were phylogenetically closer to Dendrobium officinale

    Effect of Ni/Si Mass Ratio and Thermomechanical Treatment on the Microstructure and Properties of Cu-Ni-Si Alloys

    No full text
    The effect of the Ni/Si mass ratio and combined thermomechanical treatment on the microstructure and properties of ternary Cu-Ni-Si alloys is discussed systematically. The Cu-Ni-Si alloy with a Ni/Si mass ratio of 4–5 showed good comprehensive properties. Precipitates with disc-like shapes were confirmed as the Ni2Si phase with orthorhombic structure through transmission electron microscopy, high-resolution transmission electron microscopy, and 3D atom probe characterization. After the appropriate thermomechanical treatment, the studied alloy with a Ni/Si mass ratio of 4.2 exhibited excellent mechanical properties: a hardness of 290 HV, tensile strength of 855 MPa, yield strength of 782 MPa, and elongation of 4.5%. Compared with other approaches, the thermomechanical treatment increased the hardness and strength without sacrificing electrical conductivity. Theoretical calculations indicated that the high strength was primarily attributed to the Orowan precipitation strengthening and secondarily ascribed to the work hardening, which were highly consistent with the experimental results. The appropriate Ni/Si mass ratio with a low content of Ni and Si atoms shows high strength and excellent electrical conductivity through combined thermomechanical treatment. This work provides a guideline for the design and preparation of multicomponent Cu-Ni-Si-X alloys with ultrahigh strength and excellent electrical conductivity
    corecore